aboutsummaryrefslogtreecommitdiff
blob: 9dbb6337344fda981c8c9b372f3e65eab68904f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
/* SPU native-dependent code for GDB, the GNU debugger.
   Copyright (C) 2006-2019 Free Software Foundation, Inc.

   Contributed by Ulrich Weigand <uweigand@de.ibm.com>.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "gdbcore.h"
#include "target.h"
#include "inferior.h"
#include "inf-child.h"
#include "inf-ptrace.h"
#include "regcache.h"
#include "symfile.h"
#include "gdbsupport/gdb_wait.h"
#include "gdbthread.h"
#include "gdb_bfd.h"

#include "nat/gdb_ptrace.h"
#include <asm/ptrace.h>
#include <sys/types.h>

#include "spu-tdep.h"

/* PPU side system calls.  */
#define INSTR_SC	0x44000002
#define NR_spu_run	0x0116

class spu_linux_nat_target final : public inf_ptrace_target
{
public:
  void fetch_registers (struct regcache *regcache, int regnum) override;
  void store_registers (struct regcache *regcache, int regnum) override;

  void post_attach (int) override;
  void post_startup_inferior (ptid_t) override;

  ptid_t wait (ptid_t, struct target_waitstatus *, int options) override;

  enum target_xfer_status xfer_partial (enum target_object object,
					const char *annex,
					gdb_byte *readbuf,
					const gdb_byte *writebuf,
					ULONGEST offset, ULONGEST len,
					ULONGEST *xfered_len) override;

  int can_use_hw_breakpoint (enum bptype, int, int) override;
};

static spu_linux_nat_target the_spu_linux_nat_target;

/* Fetch PPU register REGNO.  */
static ULONGEST
fetch_ppc_register (int regno)
{
  PTRACE_TYPE_RET res;

  int tid = inferior_ptid.lwp ();
  if (tid == 0)
    tid = inferior_ptid.pid ();

#ifndef __powerpc64__
  /* If running as a 32-bit process on a 64-bit system, we attempt
     to get the full 64-bit register content of the target process.
     If the PPC special ptrace call fails, we're on a 32-bit system;
     just fall through to the regular ptrace call in that case.  */
  {
    gdb_byte buf[8];

    errno = 0;
    ptrace (PPC_PTRACE_PEEKUSR_3264, tid,
	    (PTRACE_TYPE_ARG3) (regno * 8), buf);
    if (errno == 0)
      ptrace (PPC_PTRACE_PEEKUSR_3264, tid,
	      (PTRACE_TYPE_ARG3) (regno * 8 + 4), buf + 4);
    if (errno == 0)
      return (ULONGEST) *(uint64_t *)buf;
  }
#endif

  errno = 0;
  res = ptrace (PT_READ_U, tid,
	 	(PTRACE_TYPE_ARG3) (regno * sizeof (PTRACE_TYPE_RET)), 0);
  if (errno != 0)
    {
      char mess[128];
      xsnprintf (mess, sizeof mess, "reading PPC register #%d", regno);
      perror_with_name (_(mess));
    }

  return (ULONGEST) (unsigned long) res;
}

/* Fetch WORD from PPU memory at (aligned) MEMADDR in thread TID.  */
static int
fetch_ppc_memory_1 (int tid, ULONGEST memaddr, PTRACE_TYPE_RET *word)
{
  errno = 0;

#ifndef __powerpc64__
  if (memaddr >> 32)
    {
      uint64_t addr_8 = (uint64_t) memaddr;
      ptrace (PPC_PTRACE_PEEKTEXT_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word);
    }
  else
#endif
    *word = ptrace (PT_READ_I, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, 0);

  return errno;
}

/* Store WORD into PPU memory at (aligned) MEMADDR in thread TID.  */
static int
store_ppc_memory_1 (int tid, ULONGEST memaddr, PTRACE_TYPE_RET word)
{
  errno = 0;

#ifndef __powerpc64__
  if (memaddr >> 32)
    {
      uint64_t addr_8 = (uint64_t) memaddr;
      ptrace (PPC_PTRACE_POKEDATA_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word);
    }
  else
#endif
    ptrace (PT_WRITE_D, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, word);

  return errno;
}

/* Fetch LEN bytes of PPU memory at MEMADDR to MYADDR.  */
static int
fetch_ppc_memory (ULONGEST memaddr, gdb_byte *myaddr, int len)
{
  int i, ret;

  ULONGEST addr = memaddr & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
  int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
	       / sizeof (PTRACE_TYPE_RET));
  PTRACE_TYPE_RET *buffer;

  int tid = inferior_ptid.lwp ();
  if (tid == 0)
    tid = inferior_ptid.pid ();

  buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET));
  for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
    {
      ret = fetch_ppc_memory_1 (tid, addr, &buffer[i]);
      if (ret)
	return ret;
    }

  memcpy (myaddr,
	  (char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
	  len);

  return 0;
}

/* Store LEN bytes from MYADDR to PPU memory at MEMADDR.  */
static int
store_ppc_memory (ULONGEST memaddr, const gdb_byte *myaddr, int len)
{
  int i, ret;

  ULONGEST addr = memaddr & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
  int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
	       / sizeof (PTRACE_TYPE_RET));
  PTRACE_TYPE_RET *buffer;

  int tid = inferior_ptid.lwp ();
  if (tid == 0)
    tid = inferior_ptid.pid ();

  buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET));

  if (addr != memaddr || len < (int) sizeof (PTRACE_TYPE_RET))
    {
      ret = fetch_ppc_memory_1 (tid, addr, &buffer[0]);
      if (ret)
	return ret;
    }

  if (count > 1)
    {
      ret = fetch_ppc_memory_1 (tid, addr + (count - 1)
					       * sizeof (PTRACE_TYPE_RET),
				&buffer[count - 1]);
      if (ret)
	return ret;
    }

  memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
          myaddr, len);

  for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
    {
      ret = store_ppc_memory_1 (tid, addr, buffer[i]);
      if (ret)
	return ret;
    }

  return 0;
}


/* If the PPU thread is currently stopped on a spu_run system call,
   return to FD and ADDR the file handle and NPC parameter address
   used with the system call.  Return non-zero if successful.  */
static int 
parse_spufs_run (int *fd, ULONGEST *addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
  gdb_byte buf[4];
  ULONGEST pc = fetch_ppc_register (32);  /* nip */

  /* Fetch instruction preceding current NIP.  */
  if (fetch_ppc_memory (pc-4, buf, 4) != 0)
    return 0;
  /* It should be a "sc" instruction.  */
  if (extract_unsigned_integer (buf, 4, byte_order) != INSTR_SC)
    return 0;
  /* System call number should be NR_spu_run.  */
  if (fetch_ppc_register (0) != NR_spu_run)
    return 0;

  /* Register 3 contains fd, register 4 the NPC param pointer.  */
  *fd = fetch_ppc_register (34);  /* orig_gpr3 */
  *addr = fetch_ppc_register (4);
  return 1;
}


/* Implement the to_xfer_partial target_ops method for TARGET_OBJECT_SPU.
   Copy LEN bytes at OFFSET in spufs file ANNEX into/from READBUF or WRITEBUF,
   using the /proc file system.  */

static enum target_xfer_status
spu_proc_xfer_spu (const char *annex, gdb_byte *readbuf,
		   const gdb_byte *writebuf,
		   ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
{
  char buf[128];
  int fd = 0;
  int ret = -1;
  int pid = inferior_ptid.pid ();

  if (!annex)
    return TARGET_XFER_EOF;

  xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
  fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
  if (fd <= 0)
    return TARGET_XFER_E_IO;

  if (offset != 0
      && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
    {
      close (fd);
      return TARGET_XFER_EOF;
    }

  if (writebuf)
    ret = write (fd, writebuf, (size_t) len);
  else if (readbuf)
    ret = read (fd, readbuf, (size_t) len);

  close (fd);
  if (ret < 0)
    return TARGET_XFER_E_IO;
  else if (ret == 0)
    return TARGET_XFER_EOF;
  else
    {
      *xfered_len = (ULONGEST) ret;
      return TARGET_XFER_OK;
    }
}


/* Inferior memory should contain an SPE executable image at location ADDR.
   Allocate a BFD representing that executable.  Return NULL on error.  */

static void *
spu_bfd_iovec_open (struct bfd *nbfd, void *open_closure)
{
  return open_closure;
}

static int
spu_bfd_iovec_close (struct bfd *nbfd, void *stream)
{
  xfree (stream);

  /* Zero means success.  */
  return 0;
}

static file_ptr
spu_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
	             file_ptr nbytes, file_ptr offset)
{
  ULONGEST addr = *(ULONGEST *)stream;

  if (fetch_ppc_memory (addr + offset, (gdb_byte *)buf, nbytes) != 0)
    {
      bfd_set_error (bfd_error_invalid_operation);
      return -1;
    }

  return nbytes;
}

static int
spu_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
{
  /* We don't have an easy way of finding the size of embedded spu
     images.  We could parse the in-memory ELF header and section
     table to find the extent of the last section but that seems
     pointless when the size is needed only for checks of other
     parsed values in dbxread.c.  */
  memset (sb, 0, sizeof (struct stat));
  sb->st_size = INT_MAX;
  return 0;
}

static gdb_bfd_ref_ptr
spu_bfd_open (ULONGEST addr)
{
  asection *spu_name;

  ULONGEST *open_closure = XNEW (ULONGEST);
  *open_closure = addr;

  gdb_bfd_ref_ptr nbfd (gdb_bfd_openr_iovec ("<in-memory>", "elf32-spu",
					     spu_bfd_iovec_open, open_closure,
					     spu_bfd_iovec_pread,
					     spu_bfd_iovec_close,
					     spu_bfd_iovec_stat));
  if (nbfd == NULL)
    return NULL;

  if (!bfd_check_format (nbfd.get (), bfd_object))
    return NULL;

  /* Retrieve SPU name note and update BFD name.  */
  spu_name = bfd_get_section_by_name (nbfd.get (), ".note.spu_name");
  if (spu_name)
    {
      int sect_size = bfd_section_size (nbfd.get (), spu_name);
      if (sect_size > 20)
	{
	  char *buf = (char *)alloca (sect_size - 20 + 1);
	  bfd_get_section_contents (nbfd.get (), spu_name, buf, 20,
				    sect_size - 20);
	  buf[sect_size - 20] = '\0';

	  bfd_set_filename (nbfd.get (), xstrdup (buf));
	}
    }

  return nbfd;
}

/* INFERIOR_FD is a file handle passed by the inferior to the
   spu_run system call.  Assuming the SPE context was allocated
   by the libspe library, try to retrieve the main SPE executable
   file from its copy within the target process.  */
static void
spu_symbol_file_add_from_memory (int inferior_fd)
{
  ULONGEST addr;

  gdb_byte id[128];
  char annex[32];
  ULONGEST len;
  enum target_xfer_status status;

  /* Read object ID.  */
  xsnprintf (annex, sizeof annex, "%d/object-id", inferior_fd);
  status = spu_proc_xfer_spu (annex, id, NULL, 0, sizeof id, &len);
  if (status != TARGET_XFER_OK || len >= sizeof id)
    return;
  id[len] = 0;
  addr = strtoulst ((const char *) id, NULL, 16);
  if (!addr)
    return;

  /* Open BFD representing SPE executable and read its symbols.  */
  gdb_bfd_ref_ptr nbfd (spu_bfd_open (addr));
  if (nbfd != NULL)
    {
      symbol_file_add_from_bfd (nbfd.get (), bfd_get_filename (nbfd),
				SYMFILE_VERBOSE | SYMFILE_MAINLINE,
				NULL, 0, NULL);
    }
}


/* Override the post_startup_inferior routine to continue running
   the inferior until the first spu_run system call.  */
void
spu_linux_nat_target::post_startup_inferior (ptid_t ptid)
{
  int fd;
  ULONGEST addr;

  int tid = ptid.lwp ();
  if (tid == 0)
    tid = ptid.pid ();
  
  while (!parse_spufs_run (&fd, &addr))
    {
      ptrace (PT_SYSCALL, tid, (PTRACE_TYPE_ARG3) 0, 0);
      waitpid (tid, NULL, __WALL | __WNOTHREAD);
    }
}

/* Override the post_attach routine to try load the SPE executable
   file image from its copy inside the target process.  */
void
spu_linux_nat_target::post_attach (int pid)
{
  int fd;
  ULONGEST addr;

  /* Like child_post_startup_inferior, if we happened to attach to
     the inferior while it wasn't currently in spu_run, continue 
     running it until we get back there.  */
  while (!parse_spufs_run (&fd, &addr))
    {
      ptrace (PT_SYSCALL, pid, (PTRACE_TYPE_ARG3) 0, 0);
      waitpid (pid, NULL, __WALL | __WNOTHREAD);
    }

  /* If the user has not provided an executable file, try to extract
     the image from inside the target process.  */
  if (!get_exec_file (0))
    spu_symbol_file_add_from_memory (fd);
}

/* Wait for child PTID to do something.  Return id of the child,
   minus_one_ptid in case of error; store status into *OURSTATUS.  */
ptid_t
spu_linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
			    int options)
{
  int save_errno;
  int status;
  pid_t pid;

  do
    {
      set_sigint_trap ();	/* Causes SIGINT to be passed on to the
				   attached process.  */

      pid = waitpid (ptid.pid (), &status, 0);
      if (pid == -1 && errno == ECHILD)
	/* Try again with __WCLONE to check cloned processes.  */
	pid = waitpid (ptid.pid (), &status, __WCLONE);

      save_errno = errno;

      /* Make sure we don't report an event for the exit of the
         original program, if we've detached from it.  */
      if (pid != -1 && !WIFSTOPPED (status)
	  && pid != inferior_ptid.pid ())
	{
	  pid = -1;
	  save_errno = EINTR;
	}

      clear_sigint_trap ();
    }
  while (pid == -1 && save_errno == EINTR);

  if (pid == -1)
    {
      warning (_("Child process unexpectedly missing: %s"),
	       safe_strerror (save_errno));

      /* Claim it exited with unknown signal.  */
      ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
      ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
      return inferior_ptid;
    }

  store_waitstatus (ourstatus, status);
  return ptid_t (pid);
}

/* Override the fetch_inferior_register routine.  */
void
spu_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
{
  int fd;
  ULONGEST addr;

  /* Since we use functions that rely on inferior_ptid, we need to set and
     restore it.  */
  scoped_restore save_ptid
    = make_scoped_restore (&inferior_ptid, regcache->ptid ());

  /* We must be stopped on a spu_run system call.  */
  if (!parse_spufs_run (&fd, &addr))
    return;

  /* The ID register holds the spufs file handle.  */
  if (regno == -1 || regno == SPU_ID_REGNUM)
    {
      struct gdbarch *gdbarch = regcache->arch ();
      enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
      gdb_byte buf[4];
      store_unsigned_integer (buf, 4, byte_order, fd);
      regcache->raw_supply (SPU_ID_REGNUM, buf);
    }

  /* The NPC register is found at ADDR.  */
  if (regno == -1 || regno == SPU_PC_REGNUM)
    {
      gdb_byte buf[4];
      if (fetch_ppc_memory (addr, buf, 4) == 0)
	regcache->raw_supply (SPU_PC_REGNUM, buf);
    }

  /* The GPRs are found in the "regs" spufs file.  */
  if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
    {
      gdb_byte buf[16 * SPU_NUM_GPRS];
      char annex[32];
      int i;
      ULONGEST len;

      xsnprintf (annex, sizeof annex, "%d/regs", fd);
      if ((spu_proc_xfer_spu (annex, buf, NULL, 0, sizeof buf, &len)
	   == TARGET_XFER_OK)
	  && len == sizeof buf)
	for (i = 0; i < SPU_NUM_GPRS; i++)
	  regcache->raw_supply (i, buf + i*16);
    }
}

/* Override the store_inferior_register routine.  */
void
spu_linux_nat_target::store_registers (struct regcache *regcache, int regno)
{
  int fd;
  ULONGEST addr;

  /* Since we use functions that rely on inferior_ptid, we need to set and
     restore it.  */
  scoped_restore save_ptid
    = make_scoped_restore (&inferior_ptid, regcache->ptid ());

  /* We must be stopped on a spu_run system call.  */
  if (!parse_spufs_run (&fd, &addr))
    return;

  /* The NPC register is found at ADDR.  */
  if (regno == -1 || regno == SPU_PC_REGNUM)
    {
      gdb_byte buf[4];
      regcache->raw_collect (SPU_PC_REGNUM, buf);
      store_ppc_memory (addr, buf, 4);
    }

  /* The GPRs are found in the "regs" spufs file.  */
  if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
    {
      gdb_byte buf[16 * SPU_NUM_GPRS];
      char annex[32];
      int i;
      ULONGEST len;

      for (i = 0; i < SPU_NUM_GPRS; i++)
	regcache->raw_collect (i, buf + i*16);

      xsnprintf (annex, sizeof annex, "%d/regs", fd);
      spu_proc_xfer_spu (annex, NULL, buf, 0, sizeof buf, &len);
    }
}

/* Override the to_xfer_partial routine.  */
enum target_xfer_status
spu_linux_nat_target::xfer_partial (enum target_object object, const char *annex,
				    gdb_byte *readbuf, const gdb_byte *writebuf,
				    ULONGEST offset, ULONGEST len,
				    ULONGEST *xfered_len)
{
  if (object == TARGET_OBJECT_SPU)
    return spu_proc_xfer_spu (annex, readbuf, writebuf, offset, len,
			      xfered_len);

  if (object == TARGET_OBJECT_MEMORY)
    {
      int fd;
      ULONGEST addr;
      char mem_annex[32], lslr_annex[32];
      gdb_byte buf[32];
      ULONGEST lslr;
      enum target_xfer_status ret;

      /* We must be stopped on a spu_run system call.  */
      if (!parse_spufs_run (&fd, &addr))
	return TARGET_XFER_EOF;

      /* Use the "mem" spufs file to access SPU local store.  */
      xsnprintf (mem_annex, sizeof mem_annex, "%d/mem", fd);
      ret = spu_proc_xfer_spu (mem_annex, readbuf, writebuf, offset, len,
			       xfered_len);
      if (ret == TARGET_XFER_OK)
	return ret;

      /* SPU local store access wraps the address around at the
	 local store limit.  We emulate this here.  To avoid needing
	 an extra access to retrieve the LSLR, we only do that after
	 trying the original address first, and getting end-of-file.  */
      xsnprintf (lslr_annex, sizeof lslr_annex, "%d/lslr", fd);
      memset (buf, 0, sizeof buf);
      if (spu_proc_xfer_spu (lslr_annex, buf, NULL, 0, sizeof buf, xfered_len)
	  != TARGET_XFER_OK)
	return ret;

      lslr = strtoulst ((const char *) buf, NULL, 16);
      return spu_proc_xfer_spu (mem_annex, readbuf, writebuf,
				offset & lslr, len, xfered_len);
    }

  return TARGET_XFER_E_IO;
}

/* Override the to_can_use_hw_breakpoint routine.  */
int
spu_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
					     int cnt, int othertype)
{
  return 0;
}

/* Initialize SPU native target.  */
void 
_initialize_spu_nat (void)
{
  add_inf_child_target (&the_spu_linux_nat_target);
}