1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
|
//===- InputFiles.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains functions to parse Mach-O object files. In this comment,
// we describe the Mach-O file structure and how we parse it.
//
// Mach-O is not very different from ELF or COFF. The notion of symbols,
// sections and relocations exists in Mach-O as it does in ELF and COFF.
//
// Perhaps the notion that is new to those who know ELF/COFF is "subsections".
// In ELF/COFF, sections are an atomic unit of data copied from input files to
// output files. When we merge or garbage-collect sections, we treat each
// section as an atomic unit. In Mach-O, that's not the case. Sections can
// consist of multiple subsections, and subsections are a unit of merging and
// garbage-collecting. Therefore, Mach-O's subsections are more similar to
// ELF/COFF's sections than Mach-O's sections are.
//
// A section can have multiple symbols. A symbol that does not have the
// N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
// definition, a symbol is always present at the beginning of each subsection. A
// symbol with N_ALT_ENTRY attribute does not start a new subsection and can
// point to a middle of a subsection.
//
// The notion of subsections also affects how relocations are represented in
// Mach-O. All references within a section need to be explicitly represented as
// relocations if they refer to different subsections, because we obviously need
// to fix up addresses if subsections are laid out in an output file differently
// than they were in object files. To represent that, Mach-O relocations can
// refer to an unnamed location via its address. Scattered relocations (those
// with the R_SCATTERED bit set) always refer to unnamed locations.
// Non-scattered relocations refer to an unnamed location if r_extern is not set
// and r_symbolnum is zero.
//
// Without the above differences, I think you can use your knowledge about ELF
// and COFF for Mach-O.
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "Config.h"
#include "Driver.h"
#include "Dwarf.h"
#include "ExportTrie.h"
#include "InputSection.h"
#include "MachOStructs.h"
#include "ObjC.h"
#include "OutputSection.h"
#include "OutputSegment.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "Target.h"
#include "lld/Common/DWARF.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Reproduce.h"
#include "llvm/ADT/iterator.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/LTO/LTO.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TarWriter.h"
using namespace llvm;
using namespace llvm::MachO;
using namespace llvm::support::endian;
using namespace llvm::sys;
using namespace lld;
using namespace lld::macho;
std::vector<InputFile *> macho::inputFiles;
std::unique_ptr<TarWriter> macho::tar;
int InputFile::idCount = 0;
// Open a given file path and return it as a memory-mapped file.
Optional<MemoryBufferRef> macho::readFile(StringRef path) {
// Open a file.
auto mbOrErr = MemoryBuffer::getFile(path);
if (auto ec = mbOrErr.getError()) {
error("cannot open " + path + ": " + ec.message());
return None;
}
std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
MemoryBufferRef mbref = mb->getMemBufferRef();
make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
// If this is a regular non-fat file, return it.
const char *buf = mbref.getBufferStart();
auto *hdr = reinterpret_cast<const MachO::fat_header *>(buf);
if (read32be(&hdr->magic) != MachO::FAT_MAGIC) {
if (tar)
tar->append(relativeToRoot(path), mbref.getBuffer());
return mbref;
}
// Object files and archive files may be fat files, which contains
// multiple real files for different CPU ISAs. Here, we search for a
// file that matches with the current link target and returns it as
// a MemoryBufferRef.
auto *arch = reinterpret_cast<const MachO::fat_arch *>(buf + sizeof(*hdr));
for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
if (reinterpret_cast<const char *>(arch + i + 1) >
buf + mbref.getBufferSize()) {
error(path + ": fat_arch struct extends beyond end of file");
return None;
}
if (read32be(&arch[i].cputype) != target->cpuType ||
read32be(&arch[i].cpusubtype) != target->cpuSubtype)
continue;
uint32_t offset = read32be(&arch[i].offset);
uint32_t size = read32be(&arch[i].size);
if (offset + size > mbref.getBufferSize())
error(path + ": slice extends beyond end of file");
if (tar)
tar->append(relativeToRoot(path), mbref.getBuffer());
return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc));
}
error("unable to find matching architecture in " + path);
return None;
}
const load_command *macho::findCommand(const mach_header_64 *hdr,
uint32_t type) {
const uint8_t *p =
reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64);
for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
auto *cmd = reinterpret_cast<const load_command *>(p);
if (cmd->cmd == type)
return cmd;
p += cmd->cmdsize;
}
return nullptr;
}
void InputFile::parseSections(ArrayRef<section_64> sections) {
subsections.reserve(sections.size());
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
for (const section_64 &sec : sections) {
InputSection *isec = make<InputSection>();
isec->file = this;
isec->name =
StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
isec->segname =
StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset,
static_cast<size_t>(sec.size)};
if (sec.align >= 32)
error("alignment " + std::to_string(sec.align) + " of section " +
isec->name + " is too large");
else
isec->align = 1 << sec.align;
isec->flags = sec.flags;
subsections.push_back({{0, isec}});
}
}
// Find the subsection corresponding to the greatest section offset that is <=
// that of the given offset.
//
// offset: an offset relative to the start of the original InputSection (before
// any subsection splitting has occurred). It will be updated to represent the
// same location as an offset relative to the start of the containing
// subsection.
static InputSection *findContainingSubsection(SubsectionMap &map,
uint32_t *offset) {
auto it = std::prev(map.upper_bound(*offset));
*offset -= it->first;
return it->second;
}
void InputFile::parseRelocations(const section_64 &sec,
SubsectionMap &subsecMap) {
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
ArrayRef<any_relocation_info> anyRelInfos(
reinterpret_cast<const any_relocation_info *>(buf + sec.reloff),
sec.nreloc);
for (const any_relocation_info &anyRelInfo : anyRelInfos) {
if (anyRelInfo.r_word0 & R_SCATTERED)
fatal("TODO: Scattered relocations not supported");
auto relInfo = reinterpret_cast<const relocation_info &>(anyRelInfo);
Reloc r;
r.type = relInfo.r_type;
r.pcrel = relInfo.r_pcrel;
r.length = relInfo.r_length;
uint64_t rawAddend = target->getImplicitAddend(mb, sec, relInfo);
if (relInfo.r_extern) {
r.referent = symbols[relInfo.r_symbolnum];
r.addend = rawAddend;
} else {
if (relInfo.r_symbolnum == 0 || relInfo.r_symbolnum > subsections.size())
fatal("invalid section index in relocation for offset " +
std::to_string(r.offset) + " in section " + sec.sectname +
" of " + getName());
SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1];
const section_64 &referentSec = sectionHeaders[relInfo.r_symbolnum - 1];
uint32_t referentOffset;
if (relInfo.r_pcrel) {
// The implicit addend for pcrel section relocations is the pcrel offset
// in terms of the addresses in the input file. Here we adjust it so
// that it describes the offset from the start of the referent section.
// TODO: The offset of 4 is probably not right for ARM64, nor for
// relocations with r_length != 2.
referentOffset =
sec.addr + relInfo.r_address + 4 + rawAddend - referentSec.addr;
} else {
// The addend for a non-pcrel relocation is its absolute address.
referentOffset = rawAddend - referentSec.addr;
}
r.referent = findContainingSubsection(referentSubsecMap, &referentOffset);
r.addend = referentOffset;
}
r.offset = relInfo.r_address;
InputSection *subsec = findContainingSubsection(subsecMap, &r.offset);
subsec->relocs.push_back(r);
}
}
static macho::Symbol *createDefined(const structs::nlist_64 &sym,
StringRef name, InputSection *isec,
uint32_t value) {
if (sym.n_type & N_EXT)
// Global defined symbol
return symtab->addDefined(name, isec, value, sym.n_desc & N_WEAK_DEF);
// Local defined symbol
return make<Defined>(name, isec, value, sym.n_desc & N_WEAK_DEF,
/*isExternal=*/false);
}
// Absolute symbols are defined symbols that do not have an associated
// InputSection. They cannot be weak.
static macho::Symbol *createAbsolute(const structs::nlist_64 &sym,
StringRef name) {
if (sym.n_type & N_EXT)
return symtab->addDefined(name, nullptr, sym.n_value, /*isWeakDef=*/false);
return make<Defined>(name, nullptr, sym.n_value, /*isWeakDef=*/false,
/*isExternal=*/false);
}
macho::Symbol *InputFile::parseNonSectionSymbol(const structs::nlist_64 &sym,
StringRef name) {
uint8_t type = sym.n_type & N_TYPE;
switch (type) {
case N_UNDF:
return sym.n_value == 0
? symtab->addUndefined(name)
: symtab->addCommon(name, this, sym.n_value,
1 << GET_COMM_ALIGN(sym.n_desc));
case N_ABS:
return createAbsolute(sym, name);
case N_PBUD:
case N_INDR:
error("TODO: support symbols of type " + std::to_string(type));
return nullptr;
case N_SECT:
llvm_unreachable(
"N_SECT symbols should not be passed to parseNonSectionSymbol");
default:
llvm_unreachable("invalid symbol type");
}
}
void InputFile::parseSymbols(ArrayRef<structs::nlist_64> nList,
const char *strtab, bool subsectionsViaSymbols) {
// resize(), not reserve(), because we are going to create N_ALT_ENTRY symbols
// out-of-sequence.
symbols.resize(nList.size());
std::vector<size_t> altEntrySymIdxs;
for (size_t i = 0, n = nList.size(); i < n; ++i) {
const structs::nlist_64 &sym = nList[i];
StringRef name = strtab + sym.n_strx;
if ((sym.n_type & N_TYPE) != N_SECT) {
symbols[i] = parseNonSectionSymbol(sym, name);
continue;
}
const section_64 &sec = sectionHeaders[sym.n_sect - 1];
SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
uint64_t offset = sym.n_value - sec.addr;
// If the input file does not use subsections-via-symbols, all symbols can
// use the same subsection. Otherwise, we must split the sections along
// symbol boundaries.
if (!subsectionsViaSymbols) {
symbols[i] = createDefined(sym, name, subsecMap[0], offset);
continue;
}
// nList entries aren't necessarily arranged in address order. Therefore,
// we can't create alt-entry symbols at this point because a later symbol
// may split its section, which may affect which subsection the alt-entry
// symbol is assigned to. So we need to handle them in a second pass below.
if (sym.n_desc & N_ALT_ENTRY) {
altEntrySymIdxs.push_back(i);
continue;
}
// Find the subsection corresponding to the greatest section offset that is
// <= that of the current symbol. The subsection that we find either needs
// to be used directly or split in two.
uint32_t firstSize = offset;
InputSection *firstIsec = findContainingSubsection(subsecMap, &firstSize);
if (firstSize == 0) {
// Alias of an existing symbol, or the first symbol in the section. These
// are handled by reusing the existing section.
symbols[i] = createDefined(sym, name, firstIsec, 0);
continue;
}
// We saw a symbol definition at a new offset. Split the section into two
// subsections. The new symbol uses the second subsection.
auto *secondIsec = make<InputSection>(*firstIsec);
secondIsec->data = firstIsec->data.slice(firstSize);
firstIsec->data = firstIsec->data.slice(0, firstSize);
// TODO: ld64 appears to preserve the original alignment as well as each
// subsection's offset from the last aligned address. We should consider
// emulating that behavior.
secondIsec->align = MinAlign(firstIsec->align, offset);
subsecMap[offset] = secondIsec;
// By construction, the symbol will be at offset zero in the new section.
symbols[i] = createDefined(sym, name, secondIsec, 0);
}
for (size_t idx : altEntrySymIdxs) {
const structs::nlist_64 &sym = nList[idx];
StringRef name = strtab + sym.n_strx;
SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
uint32_t off = sym.n_value - sectionHeaders[sym.n_sect - 1].addr;
InputSection *subsec = findContainingSubsection(subsecMap, &off);
symbols[idx] = createDefined(sym, name, subsec, off);
}
}
OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
StringRef sectName)
: InputFile(OpaqueKind, mb) {
InputSection *isec = make<InputSection>();
isec->file = this;
isec->name = sectName.take_front(16);
isec->segname = segName.take_front(16);
const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
isec->data = {buf, mb.getBufferSize()};
subsections.push_back({{0, isec}});
}
ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime)
: InputFile(ObjKind, mb), modTime(modTime) {
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart());
if (const load_command *cmd = findCommand(hdr, LC_SEGMENT_64)) {
auto *c = reinterpret_cast<const segment_command_64 *>(cmd);
sectionHeaders = ArrayRef<section_64>{
reinterpret_cast<const section_64 *>(c + 1), c->nsects};
parseSections(sectionHeaders);
}
// TODO: Error on missing LC_SYMTAB?
if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
auto *c = reinterpret_cast<const symtab_command *>(cmd);
ArrayRef<structs::nlist_64> nList(
reinterpret_cast<const structs::nlist_64 *>(buf + c->symoff), c->nsyms);
const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
parseSymbols(nList, strtab, subsectionsViaSymbols);
}
// The relocations may refer to the symbols, so we parse them after we have
// parsed all the symbols.
for (size_t i = 0, n = subsections.size(); i < n; ++i)
parseRelocations(sectionHeaders[i], subsections[i]);
parseDebugInfo();
}
void ObjFile::parseDebugInfo() {
std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
if (!dObj)
return;
auto *ctx = make<DWARFContext>(
std::move(dObj), "",
[&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
[&](Error warning) {
warn(getName() + ": " + toString(std::move(warning)));
});
// TODO: Since object files can contain a lot of DWARF info, we should verify
// that we are parsing just the info we need
const DWARFContext::compile_unit_range &units = ctx->compile_units();
auto it = units.begin();
compileUnit = it->get();
assert(std::next(it) == units.end());
}
// The path can point to either a dylib or a .tbd file.
static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) {
Optional<MemoryBufferRef> mbref = readFile(path);
if (!mbref) {
error("could not read dylib file at " + path);
return {};
}
file_magic magic = identify_magic(mbref->getBuffer());
if (magic == file_magic::tapi_file)
return makeDylibFromTAPI(*mbref, umbrella);
assert(magic == file_magic::macho_dynamically_linked_shared_lib);
return make<DylibFile>(*mbref, umbrella);
}
// TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
// the first document storing child pointers to the rest of them. When we are
// processing a given TBD file, we store that top-level document here. When
// processing re-exports, we search its children for potentially matching
// documents in the same TBD file. Note that the children themselves don't
// point to further documents, i.e. this is a two-level tree.
//
// ld64 allows a TAPI re-export to reference documents nested within other TBD
// files, but that seems like a strange design, so this is an intentional
// deviation.
const InterfaceFile *currentTopLevelTapi = nullptr;
// Re-exports can either refer to on-disk files, or to documents within .tbd
// files.
static Optional<DylibFile *> loadReexport(StringRef path, DylibFile *umbrella) {
if (path::is_absolute(path, path::Style::posix))
for (StringRef root : config->systemLibraryRoots)
if (Optional<std::string> dylibPath =
resolveDylibPath((root + path).str()))
return loadDylib(*dylibPath, umbrella);
// TODO: Expand @loader_path, @executable_path etc
if (currentTopLevelTapi) {
for (InterfaceFile &child :
make_pointee_range(currentTopLevelTapi->documents())) {
if (path == child.getInstallName())
return make<DylibFile>(child, umbrella);
assert(child.documents().empty());
}
}
if (Optional<std::string> dylibPath = resolveDylibPath(path))
return loadDylib(*dylibPath, umbrella);
error("unable to locate re-export with install name " + path);
return {};
}
DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella)
: InputFile(DylibKind, mb) {
if (umbrella == nullptr)
umbrella = this;
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart());
// Initialize dylibName.
if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
auto *c = reinterpret_cast<const dylib_command *>(cmd);
dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
} else {
error("dylib " + getName() + " missing LC_ID_DYLIB load command");
return;
}
// Initialize symbols.
// TODO: if a re-exported dylib is public (lives in /usr/lib or
// /System/Library/Frameworks), we should bind to its symbols directly
// instead of the re-exporting umbrella library.
if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) {
auto *c = reinterpret_cast<const dyld_info_command *>(cmd);
parseTrie(buf + c->export_off, c->export_size,
[&](const Twine &name, uint64_t flags) {
bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
symbols.push_back(symtab->addDylib(saver.save(name), umbrella,
isWeakDef, isTlv));
});
} else {
error("LC_DYLD_INFO_ONLY not found in " + getName());
return;
}
if (hdr->flags & MH_NO_REEXPORTED_DYLIBS)
return;
const uint8_t *p =
reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64);
for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
auto *cmd = reinterpret_cast<const load_command *>(p);
p += cmd->cmdsize;
if (cmd->cmd != LC_REEXPORT_DYLIB)
continue;
auto *c = reinterpret_cast<const dylib_command *>(cmd);
StringRef reexportPath =
reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
if (Optional<DylibFile *> reexport = loadReexport(reexportPath, umbrella))
reexported.push_back(*reexport);
}
}
DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella)
: InputFile(DylibKind, interface) {
if (umbrella == nullptr)
umbrella = this;
dylibName = saver.save(interface.getInstallName());
auto addSymbol = [&](const Twine &name) -> void {
symbols.push_back(symtab->addDylib(saver.save(name), umbrella,
/*isWeakDef=*/false,
/*isTlv=*/false));
};
// TODO(compnerd) filter out symbols based on the target platform
// TODO: handle weak defs, thread locals
for (const auto symbol : interface.symbols()) {
if (!symbol->getArchitectures().has(config->arch))
continue;
switch (symbol->getKind()) {
case SymbolKind::GlobalSymbol:
addSymbol(symbol->getName());
break;
case SymbolKind::ObjectiveCClass:
// XXX ld64 only creates these symbols when -ObjC is passed in. We may
// want to emulate that.
addSymbol(objc::klass + symbol->getName());
addSymbol(objc::metaclass + symbol->getName());
break;
case SymbolKind::ObjectiveCClassEHType:
addSymbol(objc::ehtype + symbol->getName());
break;
case SymbolKind::ObjectiveCInstanceVariable:
addSymbol(objc::ivar + symbol->getName());
break;
}
}
bool isTopLevelTapi = false;
if (currentTopLevelTapi == nullptr) {
currentTopLevelTapi = &interface;
isTopLevelTapi = true;
}
for (InterfaceFileRef intfRef : interface.reexportedLibraries())
if (Optional<DylibFile *> reexport =
loadReexport(intfRef.getInstallName(), umbrella))
reexported.push_back(*reexport);
if (isTopLevelTapi)
currentTopLevelTapi = nullptr;
}
ArchiveFile::ArchiveFile(std::unique_ptr<llvm::object::Archive> &&f)
: InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {
for (const object::Archive::Symbol &sym : file->symbols())
symtab->addLazy(sym.getName(), this, sym);
}
void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
object::Archive::Child c =
CHECK(sym.getMember(), toString(this) +
": could not get the member for symbol " +
toMachOString(sym));
if (!seen.insert(c.getChildOffset()).second)
return;
MemoryBufferRef mb =
CHECK(c.getMemoryBufferRef(),
toString(this) +
": could not get the buffer for the member defining symbol " +
toMachOString(sym));
uint32_t modTime = toTimeT(
CHECK(c.getLastModified(), toString(this) +
": could not get the modification time "
"for the member defining symbol " +
toMachOString(sym)));
auto file = make<ObjFile>(mb, modTime);
file->archiveName = getName();
symbols.insert(symbols.end(), file->symbols.begin(), file->symbols.end());
subsections.insert(subsections.end(), file->subsections.begin(),
file->subsections.end());
}
BitcodeFile::BitcodeFile(MemoryBufferRef mbref)
: InputFile(BitcodeKind, mbref) {
obj = check(lto::InputFile::create(mbref));
}
// Returns "<internal>" or "baz.o".
std::string lld::toString(const InputFile *file) {
return file ? std::string(file->getName()) : "<internal>";
}
|