aboutsummaryrefslogtreecommitdiff
blob: a49ce2e960ffb6ac9764830f11145d045abba216 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
// icf.cc -- Identical Code Folding.
//
// Copyright (C) 2009-2017 Free Software Foundation, Inc.
// Written by Sriraman Tallam <tmsriram@google.com>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

// Identical Code Folding Algorithm
// ----------------------------------
// Detecting identical functions is done here and the basic algorithm
// is as follows.  A checksum is computed on each foldable section using
// its contents and relocations.  If the symbol name corresponding to
// a relocation is known it is used to compute the checksum.  If the
// symbol name is not known the stringified name of the object and the
// section number pointed to by the relocation is used.  The checksums
// are stored as keys in a hash map and a section is identical to some
// other section if its checksum is already present in the hash map.
// Checksum collisions are handled by using a multimap and explicitly
// checking the contents when two sections have the same checksum.
//
// However, two functions A and B with identical text but with
// relocations pointing to different foldable sections can be identical if
// the corresponding foldable sections to which their relocations point to
// turn out to be identical.  Hence, this checksumming process must be
// done repeatedly until convergence is obtained.  Here is an example for
// the following case :
//
// int funcA ()               int funcB ()
// {                          {
//   return foo();              return goo();
// }                          }
//
// The functions funcA and funcB are identical if functions foo() and
// goo() are identical.
//
// Hence, as described above, we repeatedly do the checksumming,
// assigning identical functions to the same group, until convergence is
// obtained.  Now, we have two different ways to do this depending on how
// we initialize.
//
// Algorithm I :
// -----------
// We can start with marking all functions as different and repeatedly do
// the checksumming.  This has the advantage that we do not need to wait
// for convergence. We can stop at any point and correctness will be
// guaranteed although not all cases would have been found.  However, this
// has a problem that some cases can never be found even if it is run until
// convergence.  Here is an example with mutually recursive functions :
//
// int funcA (int a)            int funcB (int a)
// {                            {
//   if (a == 1)                  if (a == 1)
//     return 1;                    return 1;
//   return 1 + funcB(a - 1);     return 1 + funcA(a - 1);
// }                            }
//
// In this example funcA and funcB are identical and one of them could be
// folded into the other.  However, if we start with assuming that funcA
// and funcB are not identical, the algorithm, even after it is run to
// convergence, cannot detect that they are identical.  It should be noted
// that even if the functions were self-recursive, Algorithm I cannot catch
// that they are identical, at least as is.
//
// Algorithm II :
// ------------
// Here we start with marking all functions as identical and then repeat
// the checksumming until convergence.  This can detect the above case
// mentioned above.  It can detect all cases that Algorithm I can and more.
// However, the caveat is that it has to be run to convergence.  It cannot
// be stopped arbitrarily like Algorithm I as correctness cannot be
// guaranteed.  Algorithm II is not implemented.
//
// Algorithm I is used because experiments show that about three
// iterations are more than enough to achieve convergence. Algorithm I can
// handle recursive calls if it is changed to use a special common symbol
// for recursive relocs.  This seems to be the most common case that
// Algorithm I could not catch as is.  Mutually recursive calls are not
// frequent and Algorithm I wins because of its ability to be stopped
// arbitrarily.
//
// Caveat with using function pointers :
// ------------------------------------
//
// Programs using function pointer comparisons/checks should use function
// folding with caution as the result of such comparisons could be different
// when folding takes place.  This could lead to unexpected run-time
// behaviour.
//
// Safe Folding :
// ------------
//
// ICF in safe mode folds only ctors and dtors if their function pointers can
// never be taken.  Also, for X86-64, safe folding uses the relocation
// type to determine if a function's pointer is taken or not and only folds
// functions whose pointers are definitely not taken.
//
// Caveat with safe folding :
// ------------------------
//
// This applies only to x86_64.
//
// Position independent executables are created from PIC objects (compiled
// with -fPIC) and/or PIE objects (compiled with -fPIE).  For PIE objects, the
// relocation types for function pointer taken and a call are the same.
// Now, it is not always possible to tell if an object used in the link of
// a pie executable is a PIC object or a PIE object.  Hence, for pie
// executables, using relocation types to disambiguate function pointers is
// currently disabled.
//
// Further, it is not correct to use safe folding to build non-pie
// executables using PIC/PIE objects.  PIC/PIE objects have different
// relocation types for function pointers than non-PIC objects, and the
// current implementation of safe folding does not handle those relocation
// types.  Hence, if used, functions whose pointers are taken could still be
// folded causing unpredictable run-time behaviour if the pointers were used
// in comparisons.
//
//
//
// How to run  : --icf=[safe|all|none]
// Optional parameters : --icf-iterations <num> --print-icf-sections
//
// Performance : Less than 20 % link-time overhead on industry strength
// applications.  Up to 6 %  text size reductions.

#include "gold.h"
#include "object.h"
#include "gc.h"
#include "icf.h"
#include "symtab.h"
#include "libiberty.h"
#include "demangle.h"
#include "elfcpp.h"
#include "int_encoding.h"

namespace gold
{

// This function determines if a section or a group of identical
// sections has unique contents.  Such unique sections or groups can be
// declared final and need not be processed any further.
// Parameters :
// ID_SECTION : Vector mapping a section index to a Section_id pair.
// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
//                            sections is already known to be unique.
// SECTION_CONTENTS : Contains the section's text and relocs to sections
//                    that cannot be folded.   SECTION_CONTENTS are NULL
//                    implies that this function is being called for the
//                    first time before the first iteration of icf.

static void
preprocess_for_unique_sections(const std::vector<Section_id>& id_section,
                               std::vector<bool>* is_secn_or_group_unique,
                               std::vector<std::string>* section_contents)
{
  Unordered_map<uint32_t, unsigned int> uniq_map;
  std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool>
    uniq_map_insert;

  for (unsigned int i = 0; i < id_section.size(); i++)
    {
      if ((*is_secn_or_group_unique)[i])
        continue;

      uint32_t cksum;
      Section_id secn = id_section[i];
      section_size_type plen;
      if (section_contents == NULL)
        {
          // Lock the object so we can read from it.  This is only called
          // single-threaded from queue_middle_tasks, so it is OK to lock.
          // Unfortunately we have no way to pass in a Task token.
          const Task* dummy_task = reinterpret_cast<const Task*>(-1);
          Task_lock_obj<Object> tl(dummy_task, secn.first);
          const unsigned char* contents;
          contents = secn.first->section_contents(secn.second,
                                                  &plen,
                                                  false);
          cksum = xcrc32(contents, plen, 0xffffffff);
        }
      else
        {
          const unsigned char* contents_array = reinterpret_cast
            <const unsigned char*>((*section_contents)[i].c_str());
          cksum = xcrc32(contents_array, (*section_contents)[i].length(),
                         0xffffffff);
        }
      uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i));
      if (uniq_map_insert.second)
        {
          (*is_secn_or_group_unique)[i] = true;
        }
      else
        {
          (*is_secn_or_group_unique)[i] = false;
          (*is_secn_or_group_unique)[uniq_map_insert.first->second] = false;
        }
    }
}

// For SHF_MERGE sections that use REL relocations, the addend is stored in
// the text section at the relocation offset.  Read  the addend value given
// the pointer to the addend in the text section and the addend size.
// Update the addend value if a valid addend is found.
// Parameters:
// RELOC_ADDEND_PTR   : Pointer to the addend in the text section.
// ADDEND_SIZE        : The size of the addend.
// RELOC_ADDEND_VALUE : Pointer to the addend that is updated.

inline void
get_rel_addend(const unsigned char* reloc_addend_ptr,
	       const unsigned int addend_size,
	       uint64_t* reloc_addend_value)
{
  switch (addend_size)
    {
    case 0:
      break;
    case 1:
      *reloc_addend_value =
        read_from_pointer<8>(reloc_addend_ptr);
      break;
    case 2:
      *reloc_addend_value =
          read_from_pointer<16>(reloc_addend_ptr);
      break;
    case 4:
      *reloc_addend_value =
        read_from_pointer<32>(reloc_addend_ptr);
      break;
    case 8:
      *reloc_addend_value =
        read_from_pointer<64>(reloc_addend_ptr);
      break;
    default:
      gold_unreachable();
    }
}

// This returns the buffer containing the section's contents, both
// text and relocs.  Relocs are differentiated as those pointing to
// sections that could be folded and those that cannot.  Only relocs
// pointing to sections that could be folded are recomputed on
// subsequent invocations of this function.
// Parameters  :
// FIRST_ITERATION    : true if it is the first invocation.
// SECN               : Section for which contents are desired.
// SECTION_NUM        : Unique section number of this section.
// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
//                      to ICF sections.
// KEPT_SECTION_ID    : Vector which maps folded sections to kept sections.
// SECTION_CONTENTS   : Store the section's text and relocs to non-ICF
//                      sections.

static std::string
get_section_contents(bool first_iteration,
                     const Section_id& secn,
                     unsigned int section_num,
                     unsigned int* num_tracked_relocs,
                     Symbol_table* symtab,
                     const std::vector<unsigned int>& kept_section_id,
                     std::vector<std::string>* section_contents)
{
  // Lock the object so we can read from it.  This is only called
  // single-threaded from queue_middle_tasks, so it is OK to lock.
  // Unfortunately we have no way to pass in a Task token.
  const Task* dummy_task = reinterpret_cast<const Task*>(-1);
  Task_lock_obj<Object> tl(dummy_task, secn.first);

  section_size_type plen;
  const unsigned char* contents = NULL;
  if (first_iteration)
    contents = secn.first->section_contents(secn.second, &plen, false);

  // The buffer to hold all the contents including relocs.  A checksum
  // is then computed on this buffer.
  std::string buffer;
  std::string icf_reloc_buffer;

  if (num_tracked_relocs)
    *num_tracked_relocs = 0;

  Icf::Reloc_info_list& reloc_info_list = 
    symtab->icf()->reloc_info_list();

  Icf::Reloc_info_list::iterator it_reloc_info_list =
    reloc_info_list.find(secn);

  buffer.clear();
  icf_reloc_buffer.clear();

  // Process relocs and put them into the buffer.

  if (it_reloc_info_list != reloc_info_list.end())
    {
      Icf::Sections_reachable_info &v =
        (it_reloc_info_list->second).section_info;
      // Stores the information of the symbol pointed to by the reloc.
      const Icf::Symbol_info &s = (it_reloc_info_list->second).symbol_info;
      // Stores the addend and the symbol value.
      Icf::Addend_info &a = (it_reloc_info_list->second).addend_info;
      // Stores the offset of the reloc.
      const Icf::Offset_info &o = (it_reloc_info_list->second).offset_info;
      const Icf::Reloc_addend_size_info &reloc_addend_size_info =
        (it_reloc_info_list->second).reloc_addend_size_info;
      Icf::Sections_reachable_info::iterator it_v = v.begin();
      Icf::Symbol_info::const_iterator it_s = s.begin();
      Icf::Addend_info::iterator it_a = a.begin();
      Icf::Offset_info::const_iterator it_o = o.begin();
      Icf::Reloc_addend_size_info::const_iterator it_addend_size =
        reloc_addend_size_info.begin();

      for (; it_v != v.end(); ++it_v, ++it_s, ++it_a, ++it_o, ++it_addend_size)
        {
	  if (first_iteration
	      && it_v->first != NULL)
	    {
	      Symbol_location loc;
	      loc.object = it_v->first;
	      loc.shndx = it_v->second;
	      loc.offset = convert_types<off_t, long long>(it_a->first
							   + it_a->second);
	      // Look through function descriptors
	      parameters->target().function_location(&loc);
	      if (loc.shndx != it_v->second)
		{
		  it_v->second = loc.shndx;
		  // Modify symvalue/addend to the code entry.
		  it_a->first = loc.offset;
		  it_a->second = 0;
		}
	    }

          // ADDEND_STR stores the symbol value and addend and offset,
          // each at most 16 hex digits long.  it_a points to a pair
          // where first is the symbol value and second is the
          // addend.
          char addend_str[50];

	  // It would be nice if we could use format macros in inttypes.h
	  // here but there are not in ISO/IEC C++ 1998.
          snprintf(addend_str, sizeof(addend_str), "%llx %llx %llux",
                   static_cast<long long>((*it_a).first),
		   static_cast<long long>((*it_a).second),
		   static_cast<unsigned long long>(*it_o));

	  // If the symbol pointed to by the reloc is not in an ordinary
	  // section or if the symbol type is not FROM_OBJECT, then the
	  // object is NULL.
	  if (it_v->first == NULL)
            {
	      if (first_iteration)
                {
		  // If the symbol name is available, use it.
                  if ((*it_s) != NULL)
                      buffer.append((*it_s)->name());
                  // Append the addend.
                  buffer.append(addend_str);
                  buffer.append("@");
		}
	      continue;
	    }

          Section_id reloc_secn(it_v->first, it_v->second);

          // If this reloc turns back and points to the same section,
          // like a recursive call, use a special symbol to mark this.
          if (reloc_secn.first == secn.first
              && reloc_secn.second == secn.second)
            {
              if (first_iteration)
                {
                  buffer.append("R");
                  buffer.append(addend_str);
                  buffer.append("@");
                }
              continue;
            }
          Icf::Uniq_secn_id_map& section_id_map =
            symtab->icf()->section_to_int_map();
          Icf::Uniq_secn_id_map::iterator section_id_map_it =
            section_id_map.find(reloc_secn);
          bool is_sym_preemptible = (*it_s != NULL
				     && !(*it_s)->is_from_dynobj()
				     && !(*it_s)->is_undefined()
				     && (*it_s)->is_preemptible());
          if (!is_sym_preemptible
              && section_id_map_it != section_id_map.end())
            {
              // This is a reloc to a section that might be folded.
              if (num_tracked_relocs)
                (*num_tracked_relocs)++;

              char kept_section_str[10];
              unsigned int secn_id = section_id_map_it->second;
              snprintf(kept_section_str, sizeof(kept_section_str), "%u",
                       kept_section_id[secn_id]);
              if (first_iteration)
                {
                  buffer.append("ICF_R");
                  buffer.append(addend_str);
                }
              icf_reloc_buffer.append(kept_section_str);
              // Append the addend.
              icf_reloc_buffer.append(addend_str);
              icf_reloc_buffer.append("@");
            }
          else
            {
              // This is a reloc to a section that cannot be folded.
              // Process it only in the first iteration.
              if (!first_iteration)
                continue;

              uint64_t secn_flags = (it_v->first)->section_flags(it_v->second);
              // This reloc points to a merge section.  Hash the
              // contents of this section.
              if ((secn_flags & elfcpp::SHF_MERGE) != 0
		  && parameters->target().can_icf_inline_merge_sections())
                {
                  uint64_t entsize =
                    (it_v->first)->section_entsize(it_v->second);
		  long long offset = it_a->first;
		  // Handle SHT_RELA and SHT_REL addends, only one of these
		  // addends exists.
		  // Get the SHT_RELA addend.  For RELA relocations, we have
		  // the addend from the relocation.
		  uint64_t reloc_addend_value = it_a->second;

		  // Handle SHT_REL addends.
		  // For REL relocations, we need to fetch the addend from the
		  // section contents.
                  const unsigned char* reloc_addend_ptr =
		    contents + static_cast<unsigned long long>(*it_o);

		  // Update the addend value with the SHT_REL addend if
		  // available.
		  get_rel_addend(reloc_addend_ptr, *it_addend_size,
				 &reloc_addend_value);

		  // Ignore the addend when it is a negative value.  See the
		  // comments in Merged_symbol_value::value in object.h.
		  if (reloc_addend_value < 0xffffff00)
		    offset = offset + reloc_addend_value;

                  section_size_type secn_len;

                  const unsigned char* str_contents =
                  (it_v->first)->section_contents(it_v->second,
                                                  &secn_len,
                                                  false) + offset;
		  gold_assert (offset < (long long) secn_len);

                  if ((secn_flags & elfcpp::SHF_STRINGS) != 0)
                    {
                      // String merge section.
                      const char* str_char =
                        reinterpret_cast<const char*>(str_contents);
                      switch(entsize)
                        {
                        case 1:
                          {
                            buffer.append(str_char);
                            break;
                          }
                        case 2:
                          {
                            const uint16_t* ptr_16 =
                              reinterpret_cast<const uint16_t*>(str_char);
                            unsigned int strlen_16 = 0;
                            // Find the NULL character.
                            while(*(ptr_16 + strlen_16) != 0)
                                strlen_16++;
                            buffer.append(str_char, strlen_16 * 2);
                          }
                          break;
                        case 4:
                          {
                            const uint32_t* ptr_32 =
                              reinterpret_cast<const uint32_t*>(str_char);
                            unsigned int strlen_32 = 0;
                            // Find the NULL character.
                            while(*(ptr_32 + strlen_32) != 0)
                                strlen_32++;
                            buffer.append(str_char, strlen_32 * 4);
                          }
                          break;
                        default:
                          gold_unreachable();
                        }
                    }
                  else
                    {
                      // Use the entsize to determine the length to copy.
		      uint64_t bufsize = entsize;
		      // If entsize is too big, copy all the remaining bytes.
		      if ((offset + entsize) > secn_len)
			bufsize = secn_len - offset;
                      buffer.append(reinterpret_cast<const
                                                     char*>(str_contents),
                                    bufsize);
                    }
		  buffer.append("@");
                }
              else if ((*it_s) != NULL)
                {
                  // If symbol name is available use that.
                  buffer.append((*it_s)->name());
                  // Append the addend.
                  buffer.append(addend_str);
                  buffer.append("@");
                }
              else
                {
                  // Symbol name is not available, like for a local symbol,
                  // use object and section id.
                  buffer.append(it_v->first->name());
                  char secn_id[10];
                  snprintf(secn_id, sizeof(secn_id), "%u",it_v->second);
                  buffer.append(secn_id);
                  // Append the addend.
                  buffer.append(addend_str);
                  buffer.append("@");
                }
            }
        }
    }

  if (first_iteration)
    {
      buffer.append("Contents = ");
      buffer.append(reinterpret_cast<const char*>(contents), plen);
      // Store the section contents that don't change to avoid recomputing
      // during the next call to this function.
      (*section_contents)[section_num] = buffer;
    }
  else
    {
      gold_assert(buffer.empty());
      // Reuse the contents computed in the previous iteration.
      buffer.append((*section_contents)[section_num]);
    }

  buffer.append(icf_reloc_buffer);
  return buffer;
}

// This function computes a checksum on each section to detect and form
// groups of identical sections.  The first iteration does this for all 
// sections.
// Further iterations do this only for the kept sections from each group to
// determine if larger groups of identical sections could be formed.  The
// first section in each group is the kept section for that group.
//
// CRC32 is the checksumming algorithm and can have collisions.  That is,
// two sections with different contents can have the same checksum. Hence,
// a multimap is used to maintain more than one group of checksum
// identical sections.  A section is added to a group only after its
// contents are explicitly compared with the kept section of the group.
//
// Parameters  :
// ITERATION_NUM           : Invocation instance of this function.
// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
//                      to ICF sections.
// KEPT_SECTION_ID    : Vector which maps folded sections to kept sections.
// ID_SECTION         : Vector mapping a section to an unique integer.
// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
//                            sections is already known to be unique.
// SECTION_CONTENTS   : Store the section's text and relocs to non-ICF
//                      sections.

static bool
match_sections(unsigned int iteration_num,
               Symbol_table* symtab,
               std::vector<unsigned int>* num_tracked_relocs,
               std::vector<unsigned int>* kept_section_id,
               const std::vector<Section_id>& id_section,
	       const std::vector<uint64_t>& section_addraligns,
               std::vector<bool>* is_secn_or_group_unique,
               std::vector<std::string>* section_contents)
{
  Unordered_multimap<uint32_t, unsigned int> section_cksum;
  std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator,
            Unordered_multimap<uint32_t, unsigned int>::iterator> key_range;
  bool converged = true;

  if (iteration_num == 1)
    preprocess_for_unique_sections(id_section,
                                   is_secn_or_group_unique,
                                   NULL);
  else
    preprocess_for_unique_sections(id_section,
                                   is_secn_or_group_unique,
                                   section_contents);

  std::vector<std::string> full_section_contents;

  for (unsigned int i = 0; i < id_section.size(); i++)
    {
      full_section_contents.push_back("");
      if ((*is_secn_or_group_unique)[i])
        continue;

      Section_id secn = id_section[i];
      std::string this_secn_contents;
      uint32_t cksum;
      if (iteration_num == 1)
        {
          unsigned int num_relocs = 0;
          this_secn_contents = get_section_contents(true, secn, i, &num_relocs,
                                                    symtab, (*kept_section_id),
                                                    section_contents);
          (*num_tracked_relocs)[i] = num_relocs;
        }
      else
        {
          if ((*kept_section_id)[i] != i)
            {
              // This section is already folded into something.
              continue;
            }
          this_secn_contents = get_section_contents(false, secn, i, NULL,
                                                    symtab, (*kept_section_id),
                                                    section_contents);
        }

      const unsigned char* this_secn_contents_array =
            reinterpret_cast<const unsigned char*>(this_secn_contents.c_str());
      cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(),
                     0xffffffff);
      size_t count = section_cksum.count(cksum);

      if (count == 0)
        {
          // Start a group with this cksum.
          section_cksum.insert(std::make_pair(cksum, i));
          full_section_contents[i] = this_secn_contents;
        }
      else
        {
          key_range = section_cksum.equal_range(cksum);
          Unordered_multimap<uint32_t, unsigned int>::iterator it;
          // Search all the groups with this cksum for a match.
          for (it = key_range.first; it != key_range.second; ++it)
            {
              unsigned int kept_section = it->second;
              if (full_section_contents[kept_section].length()
                  != this_secn_contents.length())
                  continue;
              if (memcmp(full_section_contents[kept_section].c_str(),
                         this_secn_contents.c_str(),
                         this_secn_contents.length()) != 0)
                  continue;

	      // Check section alignment here.
	      // The section with the larger alignment requirement
	      // should be kept.  We assume alignment can only be 
	      // zero or positive integral powers of two.
	      uint64_t align_i = section_addraligns[i];
	      uint64_t align_kept = section_addraligns[kept_section];
	      if (align_i <= align_kept)
		{
		  (*kept_section_id)[i] = kept_section;
		}
	      else
		{
		  (*kept_section_id)[kept_section] = i;
		  it->second = i;
		  full_section_contents[kept_section].swap(
		      full_section_contents[i]);
		}

              converged = false;
              break;
            }
          if (it == key_range.second)
            {
              // Create a new group for this cksum.
              section_cksum.insert(std::make_pair(cksum, i));
              full_section_contents[i] = this_secn_contents;
            }
        }
      // If there are no relocs to foldable sections do not process
      // this section any further.
      if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0)
        (*is_secn_or_group_unique)[i] = true;
    }

  // If a section was folded into another section that was later folded
  // again then the former has to be updated.
  for (unsigned int i = 0; i < id_section.size(); i++)
    {
      // Find the end of the folding chain
      unsigned int kept = i;
      while ((*kept_section_id)[kept] != kept)
        {
          kept = (*kept_section_id)[kept];
        }
      // Update every element of the chain
      unsigned int current = i;
      while ((*kept_section_id)[current] != kept)
        {
          unsigned int next = (*kept_section_id)[current];
          (*kept_section_id)[current] = kept;
          current = next;
        }
    }

  return converged;
}

// During safe icf (--icf=safe), only fold functions that are ctors or dtors.
// This function returns true if the section name is that of a ctor or a dtor.

static bool
is_function_ctor_or_dtor(const std::string& section_name)
{
  const char* mangled_func_name = strrchr(section_name.c_str(), '.');
  gold_assert(mangled_func_name != NULL);
  if ((is_prefix_of("._ZN", mangled_func_name)
       || is_prefix_of("._ZZ", mangled_func_name))
      && (is_gnu_v3_mangled_ctor(mangled_func_name + 1)
          || is_gnu_v3_mangled_dtor(mangled_func_name + 1)))
    {
      return true;
    }
  return false;
}

// This is the main ICF function called in gold.cc.  This does the
// initialization and calls match_sections repeatedly (twice by default)
// which computes the crc checksums and detects identical functions.

void
Icf::find_identical_sections(const Input_objects* input_objects,
                             Symbol_table* symtab)
{
  unsigned int section_num = 0;
  std::vector<unsigned int> num_tracked_relocs;
  std::vector<uint64_t> section_addraligns;
  std::vector<bool> is_secn_or_group_unique;
  std::vector<std::string> section_contents;
  const Target& target = parameters->target();

  // Decide which sections are possible candidates first.

  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
       p != input_objects->relobj_end();
       ++p)
    {
      // Lock the object so we can read from it.  This is only called
      // single-threaded from queue_middle_tasks, so it is OK to lock.
      // Unfortunately we have no way to pass in a Task token.
      const Task* dummy_task = reinterpret_cast<const Task*>(-1);
      Task_lock_obj<Object> tl(dummy_task, *p);

      for (unsigned int i = 0;i < (*p)->shnum(); ++i)
        {
	  const std::string section_name = (*p)->section_name(i);
          if (!is_section_foldable_candidate(section_name))
            continue;
          if (!(*p)->is_section_included(i))
            continue;
          if (parameters->options().gc_sections()
              && symtab->gc()->is_section_garbage(*p, i))
              continue;
	  // With --icf=safe, check if the mangled function name is a ctor
	  // or a dtor.  The mangled function name can be obtained from the
	  // section name by stripping the section prefix.
	  if (parameters->options().icf_safe_folding()
              && !is_function_ctor_or_dtor(section_name)
	      && (!target.can_check_for_function_pointers()
                  || section_has_function_pointers(*p, i)))
            {
	      continue;
            }
          this->id_section_.push_back(Section_id(*p, i));
          this->section_id_[Section_id(*p, i)] = section_num;
          this->kept_section_id_.push_back(section_num);
          num_tracked_relocs.push_back(0);
	  section_addraligns.push_back((*p)->section_addralign(i));
          is_secn_or_group_unique.push_back(false);
          section_contents.push_back("");
          section_num++;
        }
    }

  unsigned int num_iterations = 0;

  // Default number of iterations to run ICF is 2.
  unsigned int max_iterations = (parameters->options().icf_iterations() > 0)
                            ? parameters->options().icf_iterations()
                            : 2;

  bool converged = false;

  while (!converged && (num_iterations < max_iterations))
    {
      num_iterations++;
      converged = match_sections(num_iterations, symtab,
                                 &num_tracked_relocs, &this->kept_section_id_,
                                 this->id_section_, section_addraligns,
                                 &is_secn_or_group_unique, &section_contents);
    }

  if (parameters->options().print_icf_sections())
    {
      if (converged)
        gold_info(_("%s: ICF Converged after %u iteration(s)"),
                  program_name, num_iterations);
      else
        gold_info(_("%s: ICF stopped after %u iteration(s)"),
                  program_name, num_iterations);
    }

  // Unfold --keep-unique symbols.
  for (options::String_set::const_iterator p =
	 parameters->options().keep_unique_begin();
       p != parameters->options().keep_unique_end();
       ++p)
    {
      const char* name = p->c_str();
      Symbol* sym = symtab->lookup(name);
      if (sym == NULL)
	{
	  gold_warning(_("Could not find symbol %s to unfold\n"), name);
	}
      else if (sym->source() == Symbol::FROM_OBJECT 
               && !sym->object()->is_dynamic())
        {
          Relobj* obj = static_cast<Relobj*>(sym->object());
          bool is_ordinary;
          unsigned int shndx = sym->shndx(&is_ordinary);
          if (is_ordinary)
            {
	      this->unfold_section(obj, shndx);
            }
        }

    }

  this->icf_ready();
}

// Unfolds the section denoted by OBJ and SHNDX if folded.

void
Icf::unfold_section(Relobj* obj, unsigned int shndx)
{
  Section_id secn(obj, shndx);
  Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
  if (it == this->section_id_.end())
    return;
  unsigned int section_num = it->second;
  unsigned int kept_section_id = this->kept_section_id_[section_num];
  if (kept_section_id != section_num)
    this->kept_section_id_[section_num] = section_num;
}

// This function determines if the section corresponding to the
// given object and index is folded based on if the kept section
// is different from this section.

bool
Icf::is_section_folded(Relobj* obj, unsigned int shndx)
{
  Section_id secn(obj, shndx);
  Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
  if (it == this->section_id_.end())
    return false;
  unsigned int section_num = it->second;
  unsigned int kept_section_id = this->kept_section_id_[section_num];
  return kept_section_id != section_num;
}

// This function returns the folded section for the given section.

Section_id
Icf::get_folded_section(Relobj* dup_obj, unsigned int dup_shndx)
{
  Section_id dup_secn(dup_obj, dup_shndx);
  Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn);
  gold_assert(it != this->section_id_.end());
  unsigned int section_num = it->second;
  unsigned int kept_section_id = this->kept_section_id_[section_num];
  Section_id folded_section = this->id_section_[kept_section_id];
  return folded_section;
}

} // End of namespace gold.